Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38722342

ABSTRACT

This study aims to evaluate the antitrypanosomiasis activity of a synthetic dichloro-substituted aminochalcone via in vitro assays against infected cell cultures, as well as a theoretical characterization of pharmacokinetics and pharmacodynamics against the protein targets of the evolutionary cycle of T. cruzi. The in vitro evaluation of parasite proliferation inhibition was performed via cytotoxicity analysis on mammalian host cells, effect on epimastigote and trypomastigote forms, and cell death analysis, while computer simulations characterized the electronic structure of (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCl), the mechanism of action against the proteins of the evolutionary cycle of T. cruzi: Cruzain, Trypanothione reductase, TcGAPDH, and CYP51 by molecular docking and dynamics and predictive pharmacokinetics by MPO-based ADMET. The in vitro tests showed that the DCl LC50 in order of 178.9 ± 23.9 was similar to the BZN, evidencing the effectiveness of chalcone against Trypomastigotes. Molecular docking and dynamics simulations suggest that DCl acts on the active site of the CYP51 receptor, with hydrogen interactions that showed a high degree of occupation, establishing a stable complex with the target. MPO analysis and ADMET prediction tests suggest that the compound presents an alignment between permeability and hepatic clearance, although it presents low metabolic stability. Chalcone showed stable pharmacodynamics against the CYP51 target, but can form reactive metabolites from N-conjugation and C = C epoxidation, as an indication of controlled oral dose, although the estimated LD50 rate > 500 mg/kg is a indicative of low incidence of lethality by ingestion, constituting a promising therapeutic strategy.

2.
Chem Biodivers ; : e202400538, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639566

ABSTRACT

This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i.p.) with withanicandrin (4; 20 and 40 mg/kg; 20 µL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5% and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).

3.
Braz J Microbiol ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374323

ABSTRACT

The Enterobacteriaceae family is recognized as a primary group of Gram-negative pathogens responsible for foodborne illnesses and is frequently associated with antibiotic resistance. The present study explores the natural-based compound trans-cinnamaldehyde (TC) against drug-resistant Enterobacteriaceae and its synergism with gentamicin (GEN) to address this issue. The research employs three strains of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae, previously isolated from shrimp. The antibacterial activity was evaluated by the disk diffusion method, microdilution test, kinetics of growth, and time-kill curve. In addition, the synergistic effect between TC/GEN was investigated by checkerboard assay. All strains showed sensitivity to TC with an inhibition zone diameter > 35 mm. The TC showed inhibitory and bactericidal action in the most tested bacteria around 625 µg/mL. Sub-inhibitory amounts (1/2 and 1/4 MIC) of TC interfered with the growth kinetics by lag phase extension and decreased the log phase. Time-kill curves show a reduction of viable cells after the first hour of TC treatment at bactericidal concentrations. The synergistic effect between TC/GEN was observed for E. coli and E. cloacae strains with FICi ranging from 0.15 to 0.50. These findings, therefore, suggest TC as a promising alternative in the fight against drug-resistant Enterobacteriaceae that can cause foodborne illnesses.

4.
Future Microbiol ; 19: 91-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38294293

ABSTRACT

Background: Staphylococcus aureus is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. Materials & methods: The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. Results: MIC and minimum bactericidal concentration values ranged from 128 to 2048 µg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. Conclusion: Hydralazine is a potential antibacterial.


Staphylococcus aureus is a bacterium that can cause infection. Infections of S. aureus are becoming difficult to treat, but developing new drugs is a challenge. Repurposing them may be easier. This study looks at the possibility of using hydralazine, a type of medicine used to treat high blood pressure, against S. aureus. The authors found that hydralazine can kill S. aureus and can be used with other antibiotics, including oxacillin and vancomycin. Hydralazine interferes with important processes for the multiplication and survival of this bacterium. These results are preliminary but encouraging. Further studies are needed to confirm the use of hydralazine as a new treatment for S. aureus infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Methicillin , Methicillin Resistance , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests
5.
Mol Biotechnol ; 66(2): 254-269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37079267

ABSTRACT

Tinnitus is a syndrome that affects the human auditory system and is characterized by a perception of sounds in the absence of acoustic stimuli, or in total silence. Research indicates that muscarinic acetylcholine receptors (mAChRs), especially the M1 type, have a fundamental role in the alterations of auditory perceptions of tinnitus. Here, a series of computer-aided tools were used, from molecular surface analysis software to services available on the web for estimating pharmacokinetics and pharmacodynamics. The results infer that the low lipophilicity ligands, that is, the 1a-d alkyl furans, present the best pharmacokinetic profile, as compounds with an optimal alignment between permeability and clearance. However, only ligands 1a and 1b have properties that are safe for the central nervous system, the site of cholinergic modulation. These ligands showed similarity with compounds deposited in the European Molecular Biology Laboratory chemical (ChEMBL) database acting on the mAChRs M1 type, the target selected for the molecular docking test. The simulations suggest that the 1 g ligand can form the ligand-receptor complex with the best affinity energy order and that, together with the 1b ligand, they are competitive agonists in relation to the antagonist Tiotropium, in addition to acting in synergism with the drug Bromazepam in the treatment of chronic tinnitus.


Subject(s)
Receptor, Muscarinic M1 , Tinnitus , Humans , Receptor, Muscarinic M1/chemistry , Acetylcholine/pharmacology , Molecular Docking Simulation , Ligands , Tinnitus/drug therapy
6.
J Biomol Struct Dyn ; 42(3): 1280-1292, 2024.
Article in English | MEDLINE | ID: mdl-37029769

ABSTRACT

Anxiety-related mental health problems are estimated at 3.6% globally, benzodiazepines (BZDs) are the class of drugs indicated for the treatment of anxiety, including lorazepam and diazepam. However, concerns have been raised about the short- and long-term risks associated with BZDs. Therefore, despite anxiolytic and antidepressant drugs, there is a need to develop more effective pharmacotherapies with fewer side effects than existing drugs. The present work reported the synthesis, anxiolytic activity, mechanism of action in Adult Zebrafish (Danio rerio) and in silico study of a europium metallic complex with Lapachol, [Eu(DBM)3. LAP]. Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 µL) with the synthesized complex (4, 20 and 40 mg/Kg) and with the vehicle (DMSO 3%; 20 µL), being submitted to the tests of locomotor activity and 96h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1, 5-HTR2A/2C and 5-HTR3A/3B receptors. The complex was characterized using spectrometric techniques, and the anxiolytic effect of complex may be involved the neuromodulation of receptors 5-HT3A/3B, since the pre-treatment with pizotifen and cyproheptadine did not block the anxiolytic effect of [Eu(DBM)3. LAP], unlike fluoxetine had its anxiolytic effect reversed. In addition, molecular docking showed interaction between the [Eu(DBM)3. LAP] and 5HT3A receptor with binding energy -7.8 kcal/mol and the ADMET study showed that complex has low toxic risk. It is expected that the beginning of this study will allow the application of the new anxiolytic drugs, given the pharmacological potential of the lapachol complex.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Anxiety Agents , Naphthoquinones , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Zebrafish , Europium , Molecular Docking Simulation , Benzodiazepines
7.
Future Med Chem ; 16(1): 11-26, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38084595

ABSTRACT

Aim: Our objective was to investigate the trypanocidal effect of the chalcone (2E,4E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-5-phenylpenta-2,4-dien-1-one (CPNC). Material & methods: Cytotoxicity toward LLC-MK2 host cells was assessed by MTT assay, and the effect on Trypanosoma cruzi life forms (epimastigotes, trypomastigotes and amastigotes) was evaluated by counting. Flow cytometry analysis was performed to evaluate the possible mechanisms of action. Finally, molecular docking simulations were performed to evaluate interactions between CPNC and T. cruzi enzymes. Results: CPNC showed activity against epimastigote, trypomastigote and amastigote life forms, induced membrane damage, increased cytoplasmic reactive oxygen species and mitochondrial dysfunction on T. cruzi. Regarding molecular docking, CPNC interacted with both trypanothione reductase and TcCr enzymes. Conclusion: CPNC presented a trypanocidal effect, and its effect is related to oxidative stress, mitochondrial impairment and necrosis.


Subject(s)
Chagas Disease , Chalcones , Trypanocidal Agents , Trypanosoma cruzi , Humans , Chalcones/pharmacology , Molecular Docking Simulation , Chagas Disease/drug therapy , Reactive Oxygen Species , Trypanocidal Agents/pharmacology
8.
Fundam Clin Pharmacol ; 38(2): 290-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37845792

ABSTRACT

BACKGROUND: Anxiety disorders represent the complex interaction between biological, psychological, temperamental, and environmental factors; drugs available to treat anxiety such as benzodiazepines (BZDs) are associated with several unwanted side effects. Although there are useful treatments, there is still a need for more effective anxiolytics with better safety profiles than BZDs. Chalcones or 1,3-diphenyl-2-proper-1-ones can be an alternative since this class of compounds has shown therapeutic potential mainly due to interactions with GABAA receptors and serotonergic system. OBJECTIVES: This study evaluated the anxiolytic potential of chalcone (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (C2OHPDA) in adult zebrafish (Danio rerio) (ZFa). METHODS: Each animal (n = 6/group) was treated intraperitoneally (i.p.; 20 µL) with the chalcone (4, 20, and 40 mg/kg) and with the vehicle (DMSO 3%; 20 µL), being submitted to the tests of locomotor activity and 96-h acute toxicity. The light/dark test was also performed, and the serotonergic mechanism (5-HT) was evaluated through the antagonists of the 5-HTR1 , 5-HTR2A/2C , and 5-HTR3A/3B receptors. It was investigated the prediction of the chalcone's position and preferential orientation concerning its receptor, as well as the pharmacokinetic parameters (ADMET) involved in the process after administration. RESULTS: As a result, C2OHPDA was not toxic and reduced the locomotor activity of ZFa. Furthermore, chalcone demonstrated an anxiolytic effect on the central nervous system (CNS), mediated by the serotonergic system, with action on 5-HT2A and 5-HTR3A/3B receptors. The interaction of C2OHPDA with 5-HT2A R and 5-HT3A receptors was confirmed by molecular docking study, the affinity energy observed was -8.7 and -9.1 kcal/mol, respectively. CONCLUSION: Thus, this study adds new evidence and highlights that chalcone can potentially be used to develop compounds with anxiolytic properties.


Subject(s)
Anti-Anxiety Agents , Chalcone , Chalcones , Animals , Anti-Anxiety Agents/pharmacology , Zebrafish , Molecular Docking Simulation , Serotonin , Benzodiazepines , Receptors, GABA-A
9.
J Biomol Struct Dyn ; 42(4): 1670-1691, 2024.
Article in English | MEDLINE | ID: mdl-37222682

ABSTRACT

Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-ß-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.


Subject(s)
Chalcone , Chalcones , Nitrophenols , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Norfloxacin/pharmacology , Norfloxacin/metabolism , Molecular Docking Simulation , Chalcone/pharmacology , Chalcones/pharmacology , Microbial Sensitivity Tests , Ethidium/metabolism , Bacterial Proteins/chemistry , Multidrug Resistance-Associated Proteins
10.
Fundam Clin Pharmacol ; 38(1): 60-71, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37497790

ABSTRACT

BACKGROUND: The bacterium Staphylococcus aureus has stood out for presenting a high adaptability, acquiring resistance to multiple drugs. The search for natural or synthetic compounds with antibacterial properties capable of reversing the resistance of S. aureus is the main challenge to be overcome today. Natural products such as chalcones are substances present in the secondary metabolism of plants, presenting important biological activities such as antitumor, antidiabetic, and antimicrobial activity. OBJECTIVES: In this context, the aim of this work was to synthesize the chalcone (2E)-1-(3'-aminophenyl)-3-(4-dimethylaminophenyl)-prop-2-en-1-one with nomenclature CMADMA, confirm its structure by nuclear magnetic resonance (NMR), and evaluate its antibacterial properties. METHODS: The synthesis methodology used was that of Claisen-Schmidt, and spectroscopic characterization was performed by NMR. For microbiological assays, the broth microdilution methodology was adopted in order to analyze the antibacterial potential of chalcones and to analyze their ability to act as a possible inhibitor of ß-lactamase and efflux pump resistance mechanisms, present in S. aureus strain K4100. RESULTS: The results obtained show that CMADMA does not show direct antibacterial activity, expressing a MIC of ≥1024 µg/mL, or on the enzymatic mechanism of ß-lactamase; however, when associated with ethidium bromide in efflux pump inhibition assays, CMADMA showed promising activity by reducing the MIC of the bromide from 64 to 32 µg/mL. CONCLUSION: We conclude that the chalcone synthesized in this study is a promising substance to combat bacterial resistance, possibly acting in the inhibition of the QacC efflux pump present in S. aureus strain K4100, as evidenced by the reduction in the MIC of ethidium bromide.


Subject(s)
Chalcone , Chalcones , Staphylococcus aureus , Chalcone/pharmacology , Chalcone/metabolism , Chalcones/pharmacology , Ethidium/metabolism , Ethidium/pharmacology , beta-Lactamases/metabolism , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
11.
Fundam Clin Pharmacol ; 38(1): 84-98, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37649138

ABSTRACT

BACKGROUND: Thiadiazines are heterocyclic compounds that contain two nitrogen atoms and one sulfur atom in their structure. These synthetic molecules have several relevant pharmacological activities, such as antifungal, antibacterial, and antiparasitic. OBJECTIVES: The present study aimed to evaluate the possible in vitro and in silico interactions of compounds derived from thiadiazines. METHODS: The compounds were initially synthesized, purified, and confirmed through HPLC methodology. Multi-drug resistant bacterial strains of Staphylococcus aureus 10 and Pseudomonas aeruginosa 24 were used to evaluate the direct and modifying antibiotic activity of thiadiazine derivatives. ADMET assays (absorption, distribution, metabolism, excretion, and toxicity) were conducted, which evaluated the influence of the compounds against thousands of macromolecules considered as bioactive targets. RESULTS: There were modifications in the chemical synthesis in carbon 4 or 3 in one of the aromatic rings of the structure where different ions were added, ensuring a variability of products. It was possible to observe results that indicate the possibility of these compounds acting through the cyclooxygenase 2 mechanism, which, in addition to being involved in inflammatory responses, also acts by helping sodium reabsorption. The amine group present in thiadiazine analogs confers hydrophilic characteristics to the substances, but this primary characteristic has been altered due to alterations and insertions of other ligands. The characteristics of the analogs generally allow easy intestinal absorption, reduce possible hepatic toxic effects, and enable possible neurological and anti-inflammatory action. The antibacterial activity tests showed a slight direct action, mainly of the IJ23 analog. Some compounds were able to modify the action of the antibiotics gentamicin and norfloxacin against multi-drug resistant strains, indicating a possible synergistic action. CONCLUSIONS: Among all the results obtained in the study, the relevance of thiadiazine analogs as possible coadjuvant drugs in the antibacterial, anti-inflammatory, and neurological action with low toxicity is clear. Need for further studies to verify these effects in living organisms is not ruled out.


Subject(s)
Anti-Infective Agents , Thiadiazines , Anti-Bacterial Agents/pharmacology , Thiadiazines/pharmacology , Thiadiazines/chemistry , Norfloxacin/pharmacology , Anti-Inflammatory Agents , Microbial Sensitivity Tests
12.
Toxicon ; 238: 107591, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38160738

ABSTRACT

Bufadienolides are digitalis-like aglycones mainly found in skin secretions of toads. Among their biological properties, the mechanisms of antiproliferative action on tumor cells remain unclear for many compounds, including against leukemia cells. Herein, it was evaluated the mechanisms involved in the antiproliferative and genotoxic actions of hellebrigenin on tumor cell lines and in silico capacity to inhibit the human topoisomerase IIa enzyme. Firstly, its cytotoxic action was investigated by colorimetric assays in human tumor and peripheral blood mononuclear cells (PBMC). Next, biochemical and morphological studies were detailed by light microscopy (trypan blue dye exclusion), immunocytochemistry (BrdU uptake), flow cytometry and DNA/chromosomal damages (Cometa and aberrations). Finally, computational modelling was used to search for topoisomerase inhibition. Hellebrigenin reduced proliferation, BrdU incorporation, viability, and membrane integrity of HL-60 leukemia cells. Additionally, it increased G2/M arrest, internucleosomal DNA fragmentation, mitochondrial depolarization, and phosphatidylserine externalization in a concentration-dependent manner. In contrast to doxorubicin, hellebrigenin did not cause DNA strand breaks in HL-60 cell line and lymphocytes, and it interacts with ATPase domain residues of human topoisomerase IIa, generating a complex of hydrophobic and van der Waals interactions and hydrogen bonds. So, hellebrigenin presented potent anti-leukemic activity at concentrations as low as 0.06 µM, a value comparable to the clinical anticancer agent doxorubicin, and caused biochemical changes suggestive of apoptosis without genotoxic/clastogenic-related action, but it probably triggers catalytic inhibition of topoisomerase II. These findings also emphasize toad steroid toxins as promising lead antineoplasic compounds with relatively low cytotoxic action on human normal cells.


Subject(s)
Antineoplastic Agents , Bufanolides , Leukemia , Humans , Leukocytes, Mononuclear , Bromodeoxyuridine/pharmacology , DNA Damage , Antineoplastic Agents/pharmacology , Bufanolides/chemistry , HL-60 Cells , Apoptosis , DNA/pharmacology , Doxorubicin/pharmacology
13.
J Med Microbiol ; 72(9)2023 Sep.
Article in English | MEDLINE | ID: mdl-37707372

ABSTRACT

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Oxacillin , Oxacillin/pharmacology , Vitamin K 3/pharmacology , Methicillin , Staphylococcus aureus , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Biofilms
14.
3 Biotech ; 13(9): 301, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37588795

ABSTRACT

This work presents the synthesis of 12 phenol and chromone derivatives, prepared by the analogs, and the possibility of conducting an in silico study of its derivatives as a therapeutic alternative to combat the SARS-CoV-2, pathogen responsible for COVID-19 pandemic, using its S-glycoprotein as a macromolecular target. After the initial screening for the ranking of the products, it was chosen which structure presented the best energy bond with the target. As a result, derivative 4 was submitted to a molecular growth study using artificial intelligence, where 8436 initial structures were obtained that passed through the interaction filters and similarity to the active glycoprotein pocket through the MolAICal computational package. Thus, 557 Hits with active configuration were generated, which is very promising compared to the BLA reference link for inhibiting the biological target. Molecular dynamics also simulated these compounds to verify their stability within the active protein site to seek new therapeutic propositions to fight against the pandemic. The Hit 48 and 250 are the most active compounds against SARS-CoV-2. In summary, the results show that the Hit 250 would be more active than the natural compound, which could be further developed for further testing against SARS-CoV-2. The study employs the de novo approach to design new drugs, combining artificial intelligence and molecular dynamics simulations to create efficient molecular structures. This research aims to contribute to the development of effective therapeutic strategies against the pandemic.

15.
Daru ; 31(2): 183-192, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37639147

ABSTRACT

BACKGROUND: Clove volatile oil (CVO) and its major compound, eugenol (EUG), have anxiolytic effects, but their clinical use has been impaired due to their low bioavailability. Thus, their encapsulation in nanosystems can be an alternative to overcome these limitations. OBJECTIVES: This work aims to prepare, characterize and study the anxiolytic potential of CVO loaded-nanoemulsions (CVO-NE) against anxious-like behavior in adult zebrafish (Danio rerio). METHODS: The CVO-NE was prepared using Agaricus blazei Murill polysaccharides as stabilizing agent. The drug-excipient interactions were performed, as well as colloidal characterization of CVO-NE and empty nanoemulsion (B-NE). The acute toxicity and potential anxiolytic activity of CVO, EUG, CVO-NE and B-NE against adult zebrafish models were determined. RESULTS: CVO, EUG, CVO-NE and B-NE presented low acute toxicity, reduced the locomotor activity and anxious-like behavior of the zebrafish at 4 - 20 mg kg-1. CVO-NE reduced the anxious-like behavior of adult zebrafish without affecting their locomotor activity. In addition, it was demonstrated that anxiolytic activity of CVO, EUG and CVO-NE is linked to the involvement of GABAergic pathway. CONCLUSION: Therefore, this study demonstrates the anxiolytic effect of CVO, in addition to providing a new nanoformulation for its administration.


Subject(s)
Anti-Anxiety Agents , Oils, Volatile , Syzygium , Animals , Clove Oil/pharmacology , Clove Oil/metabolism , Oils, Volatile/pharmacology , Zebrafish , Syzygium/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Eugenol/pharmacology , Eugenol/metabolism
16.
3 Biotech ; 13(7): 255, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37396469

ABSTRACT

Essential oils extracted from many plant species have different biological activities, among which microbial activity stands out. Species of the genus Piper have antimicrobial potential against different species of bacteria and fungi. In this sense, the present study aimed to determine the chemical composition of the essential oil from the leaves of Piper gaudichaudianum (EOPG), as well as to investigate their antimicrobial activity and their modulatory effect on the Norfloxacin resistance in the Staphylococcus aureus SA1199B strain overproducer of the NorA efflux pump. Furthermore, their inhibitory activities on the biofilm formation as well as on the cellular differentiation of C. albicans were evaluated. Gas chromatography analysis identified 24 compounds, such as hydrocarbon sesquiterpenes (54.8%) and oxygenated sesquiterpenes (28.5%). To investigate the antimicrobial potential of EOPG against S. aureus, E. coli, and C. albicans, a microdilution assay was performed, and no intrinsic antimicrobial activity was observed. On the other hand, the oil potentiated the activity of Norfloxacin against the SA1199B strain, indicating that EOPG could be used in association with Norfloxacin against S. aureus strains resistant to this antibiotic. EOPG also inhibited S. aureus biofilm formation, as evidenced by the crystal violet assay. In the dimorphism assay, EOPG was able to inhibit the cell differentiation process in C. albicans. Results indicate that EOPG could be used in association with Norfloxacin in the treatment of infections caused by resistant S. aureus strains overproducing the NorA efflux pump. Furthermore, its ability to inhibit the formation of hyphae by C. albicans suggests that EOPG could also be applied in the prevention and/or treatment of fungal infections.

17.
Mol Biotechnol ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37490200

ABSTRACT

Severe Acute Respiratory Syndrome caused by a coronavirus is a recent viral infection. There is no scientific evidence or clinical trials to indicate that possible therapies have demonstrated results in suspected or confirmed patients. This work aims to perform a virtual screening of 1430 ligands through molecular docking and to evaluate the possible inhibitory capacity of these drugs about the Mpro protease of Covid-19. The selected drugs were registered with the FDA and available in the virtual drug library, widely used by the population. The simulation was performed using the MolAiCalD algorithm, with a Lamarckian genetic model (GA) combined with energy estimation based on rigid and flexible conformation grids. In addition, molecular dynamics studies were also performed to verify the stability of the receptor-ligand complexes formed through analyses of RMSD, RMSF, H-Bond, SASA, and MMGBSA. Compared to the binding energy of the synthetic redocking coupling (-6.8 kcal/mol/RMSD of 1.34 Å), which was considerably higher, it was then decided to analyze the parameters of only three ligands: ergotamine (-9.9 kcal/mol/RMSD of 2.0 Å), dihydroergotamine (-9.8 kcal/mol/RMSD of 1.46 Å) and olysio (-9.5 kcal/mol/RMSD of 1.5 Å). It can be stated that ergotamine showed the best interactions with the Mpro protease of Covid-19 in the in silico study, showing itself as a promising candidate for treating Covid-19.

18.
3 Biotech ; 13(8): 276, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37457871

ABSTRACT

Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03696-8.

19.
Microb Pathog ; 180: 106129, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119940

ABSTRACT

The increased resistance of microorganisms to antimicrobial drugs makes it necessary to search for new active compounds, such as chalcones. Their simple chemical structure makes them molecules easy to synthesize. Therefore, the aim of this study was to evaluate the antimicrobial and potentiating activity of antibiotics and antifungals by synthetic chalcones against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Candida tropicalis. The synthesis of chalcones was carried out by Claisen-Schimidt aldol condensation. Nuclear Magnetic Resonance (NMR) and Gas Chromatography Coupled to Mass Spectrometry (GC/MS) were also performed. Microbiological tests were performed by the broth microdilution method, using gentamicin, norfloxacin and penicillin as standard drugs for the antibacterial assay, and fluconazole for the antifungal assay. Three chalcones were obtained (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnone-1,3,6,8-tetraen-5-one (DB-CNM), (1E,4E)-1,5-bis (4-methoxyphenyl) penta-1,4-dien-3-one (DB-Anisal). The compound DB-Acetone was able to inhibit P. aeruginosa ATCC 9027 at a concentration of 1.4 × 102 µM (32 µg/mL), while DB-CNM and DB-Anisal inhibited the growth of S. aureus ATCC 25923 at 17.88 × 102 µM and 2.71 × 101 µM (512 µg/mL and 8 µg/mL) respectively. In the combined activity, DB-Anisal was able to potentiate the effect of the three antibacterial drugs tested against E. coli 06, norfloxacin (128 for 4 µg/mL ±1) against P. aeruginosa 24 and penicillin (1,024 for 16 µg/mL ±1) against S. aureus 10. In antifungal assays, chalcones were not able to inhibit the growth of fungal strains tested. However, both showed potentiating activity with fluconazole, ranging from 8.17 x 10-1 µM (0.4909 µg/mL) to 2.35 µM (13.96 µg/mL). It is concluded that synthetic chalcones have antimicrobial potential, demonstrating good intrinsic activity against fungi and bacteria, in addition to potentiating the antibiotics and antifungal tested. Further studies are needed addressing the mechanisms of action responsible for the results found in this work.


Subject(s)
Anti-Infective Agents , Chalcones , Antifungal Agents/chemistry , Fluconazole/pharmacology , Chalcones/pharmacology , Chalcones/chemistry , Staphylococcus aureus , Norfloxacin/pharmacology , Escherichia coli , Acetone/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/chemistry , Candida albicans , Penicillins/pharmacology , Microbial Sensitivity Tests
20.
Planta Med ; 89(10): 979-989, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36940928

ABSTRACT

Rauvolfia species are well known as producers of bioactive monoterpene indole alkaloids, which exhibit a broad spectrum of biological activities. A new vobasine-sarpagan-type bisindole alkaloid (1: ) along with six known monomeric indoles (2, 3/4, 5: , and 6/7: ) were isolated from the ethanol extract of the roots of Rauvolfia ligustrina. The structure of the new compound was elucidated by interpretation of their spectroscopic data (1D and 2D NMR and HRESIMS) and comparison with published data for analog compounds. The cytotoxicity of the isolated compounds was screened in a zebrafish (Danio rerio) model. The possible GABAergic (diazepam as the positive control) and serotoninergic (fluoxetine as the positive control) mechanisms of action in adult zebrafish were also evaluated. No compounds were cytotoxic. Compound 2: and the epimers 3: /4: and 6: /7: showed a mechanism action by GABAA, while compound 1: showed a mechanism action by a serotonin receptor (anxiolytic activity). Molecular docking studies showed that compounds 2: and 5: have a greater affinity by the GABAA receptor when compared with diazepam, whereas 1: showed the best affinity for the 5HT2AR channel when compared to risperidone.


Subject(s)
Alkaloids , Anti-Anxiety Agents , Antineoplastic Agents , Rauwolfia , Animals , Rauwolfia/chemistry , Anti-Anxiety Agents/pharmacology , Zebrafish , Molecular Docking Simulation , Indole Alkaloids/chemistry , Diazepam/pharmacology , Receptors, GABA-A , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...